Extracting MFCC Features For Emotion Recognition From Audio Speech Signals

نویسنده

  • SHIVANI GOEL
چکیده

A major challenge for automatic speech recognition (ASR) relates to significant performance reduction in noisy environments. Recent research has shown that auditory features based on Gammatone filters are promising to improve robustness of ASR systems against noise, though the research is far from extensive and generalizability of the new features is unknown. This paper presents our implementation of the Gammatone filterbased feature along with BPNN and the experimental results on English speech data. By some thorough designs, we obtained significant performance gains with the new feature in various noise conditions when compared with the widely used MFCC. The whole simulation has been taken place in MATLAB.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions

Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...

متن کامل

Emotion Recognition using Dynamic Time Warping Technique for Isolated Words

Emotion recognition helps to recognize the internal expressions of the individuals from the speech database. In this paper, Dynamic time warping (DTW) technique is utilized to recognize speaker independent Emotion recognition based on 39 MFCC features. A large audio of around 960 samples of isolated words of five different emotions are collected and recorded at 20 to 300 KHz sampling frequency....

متن کامل

Acoustic Emotion Recognition Using Linear and Nonlinear Cepstral Coefficients

Recognizing human emotions through vocal channel has gained increased attention recently. In this paper, we study how used features, and classifiers impact recognition accuracy of emotions present in speech. Four emotional states are considered for classification of emotions from speech in this work. For this aim, features are extracted from audio characteristics of emotional speech using Linea...

متن کامل

Speech Emotion Recognition Using Scalogram Based Deep Structure

Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...

متن کامل

Recognition and Classification of Human Emotion from Audio

In this paper, the audio emotion recognition system is proposed that uses a mixture of rule-based and machine learning techniques to improve the recognition efficacy in the audio paths. The audio path is designed using a combination of input prosodic features (pitch, log-energy, zero crossing rates and Teager energy operator) and spectral features (Mel-scale frequency cepstral coefficients). Me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014